NIST Workshop: High Throughput Analysis of Multicomponent Multiphase Diffusion Data April 1-2

Carelyn Campbell & Bill Boettinger

Metallurgy Division

Why a Workshop on Diffusion?

- Consensus of NIST Workshop held March 21-22, 2002 *Computational Thermodynamics and Diffusion Modeling*- Promotes continuing interest in thermodynamic databases
- Metallurgy Division participation in DARPA/AIM/GE program on Turbine Disks
- NIST interest in Combinatorial (High Thoughput) Measurement Methods
- Existence of legacy Diffusion in Metals Data base at NIST (J. R. Manning)

- Improve communication between experts in multicomponent diffusion measurement, analysis and simulation.
- Establish the most efficient method for extracting diffusion data (diffusion coefficients, fluxes, marker location) from multicomponent diffusion couple experiments.
- Provide a forum to solve common diffusion software execution problems.
- Agree on a common diffusion mobility data base assessment procedure.
- Establish a general approach to data handling and diffusion modeling in ordered phases.
- Develop standard problems and web site for inter-laboratory comparison of diffusion simulation methods and data extraction techniques

Agenda

Thursday, April 1, 2004

8:30-9:00 Introduction (Coffee and bagels)

9:00 -10:00 Review of action items from last workshop

- Diffusion notation
- Code for t^{1/2} growth for multiple planar layers in binary alloy (Boettinger)
- MultiDiflux (Dayananda)
- Progress on web access to Metallurgy Div. Diffusion Database (Campbell)
- Other

10-10:30 A new technique to measure ternary interdiffusion coefficients (Sohn)

10:30-11:00 Unresolved issues concerning diffusion paths: Horns and the occurrence of type 3 and higher order boundaries (Morral)

11:00-11:30 Select ternary multiphase microstructures (Dayananda)

11:30- 12:00 Electron probe x-ray microanalysis: doing it right and doing it wrong! (Newbury)

12:00-1:00 Lunch

Agenda

Thursday afternoon

- 1:00-1:15 Update on diffusion in unstable phases (bcc Cu) (Mishin)
- 1:15-1:45 **Diffusion in ordered phases** (Mishin)
- 1:45-2:15 First-principles calculations of the vacancy formation energy (Wang)
- 2:15-3:15 Lateral Deformation of Diffusion Couples (3-D Kirkendall effect) (Boettinger)
- 3:15-4:15 Discussion
- 4:15-4:45 Implementation of diffusion model for ordered phases (Campbell)
- 4:45-5:30 Discussion of diffusion models

6:00 Dinner: Summit Station

Friday April 2

9:00-9:30 Update **Optimization methods** (Campbell and Höglund) 9:30-10:00 Discussion of Standard Problems/ Teaching Methods 10:00-11:00 Open discussion 11:00 –12:00 Action items

Lunch/Adjourn

Further testing and refinement of database using GE Diffusion Couple Data (FY 2003)

- Binary Couples
 - Single phase couples
 - at 1100 °C for 1000 h : Ni/Co
 - Multiphase couples
 - at 1100 °C for 1000 h : Co/Cr, Co/Mo, Co/Nb, Co/W, Cr/Ta, Cr/W, Cr/Mo, Ni/W, Ni/Ta, Ni/Mo, Ni/NiAI(1150 °C)
 - at 850 °C for 4000 h: Ni/W, Co/Fe, Cr/Mo, Cr/Co, Mo/Fe
 - at 700 °C for 4000 h: Fe/Co, Mo/Cr
- Multicomponent Couples
 - Single Phase γ
 - at 1150 °C for 1000 h: René88 /IN718 and Ni/René88
 - γ / γ+γ' or γ+γ' / γ+γ' at 1150 °C for 1000 h
 - René-95/ René-88 ME3/IN718 IN100/ME3
 U720/IN718 IN100/ René-88 René-95/U720
 IN718/IN100 U720/ME3 René-95/IN718
 ME3/ René-95 ME3/ René-88 IN100/U720
 - γ / B2 or γ + γ ' /B2
 - at 1150 °C for 1000 h: NiAl/ René-88, NiAl/Ta
 - at 850 °C for 4000 h: NiAl/ René-88, NiAl/Ta
 - TCP Couples: (Rene88-X)
 - at 1150 °C for 1000 h: X= Ta, W
 - at 850 °C for 4000 h: X=Ta, W, Co, Cr, Fe, Mo, Ni, Ti
 - at 700 °C for 4000 h: X=Co, Cr, Fe, Mo

NIST participation in GE-AIM (DARPA) Program γ' Precipitation Model

Linear cooling rate 0.2 °C/s

Multicomponent Mobility Database for FCC phase of Superalloys

Campbell, Boettinger & Kattner, Acta Mat.50 (2002) 775-792.

(Rer	né-N4	(x10 ⁻¹	¹⁴ m²/s)					
		Al	Со	Cr	Мо	Nb	Та	Ti	W	
	Al	+119.5	+13.93	+34.83	+34.34	+42.43	+51.50	+49.51	+ 53.22	
	Со	-11.37	+17.00	-8.25	-5.67	-5.55	-1.83	-7.10	-9.69	
	Cr	-4.26	-5.37	+13.67	-3.21	+8.93	+9.91	+8.25	+2.49	
	Mo	-8.33	-0.280	-0.426	+7.57	-0.55	-0.36	-0.17	-0.45	
	Nb	+0.31	+0.25	+0.66	+0.27	+24.05	+0.74	+0.85	+0.31	
	Та	-0.68	+0.33	+0.53	+0.24	+0.26	+0.76	+0.50	+0.23	
	Ti	+1.63	+1.35	+4.94	+4.94	+ 6.25	+6.57	+23.62	+5.41	
	W	-1.81	-0.62	-0.55	-0.60	-1.22	-0.83	-0.70	+3.40	

Ni = solvent Reduced (n-1)Diffusion

Matrix at 1293 °C

René-N5 (x10⁻¹⁴ m²/s)

	Al	Со	Cr	Hf	Мо	Re	Та	W
Al	+93.16	+13.92	+33.46	-6.51	+33.42	25.44	+48.63	+50.87
Со	-6.51	+27.22	-8.56	-27.64	-4.95	-5.11	+3.87	-9.21
Cr	+4.15	-4.23	+21.02	-6.25	-0.22	-0.78	+13.81	+ 6.89
Ηf	0.86	+0.07	+1.70	+262.1	+1.52	0.87	+2.37	+1.84
Mo	-0.35	-0.30	-0.30	-1.905	+7.71	-0.25	-0.13	-0.19
Re	-0.75	-0.32	-0.36	-2.59	-0.25	+0.08	-0.51	-0.32
Та	-0.03	+0.33	+0.98	-4.17	+0.64	+0.86	+7.75	+0.87
W	-1.18	-0.57	-0.54	-4.51	-0.39	-0.11	-0.76	+0.59

René-88/IN-100; 1000 h at 1150 °C

Experimental data from J-C. Zhao, GE Global Research

René-88/IN-100; 1000 h at 1150 °C

IN-718/IN-100; 1000 h at 1150 °C

2000 IN100

IN-718/IN-100; 1000 h at 1150 °C

Ni-René88

Definitions

Coefficient	General Notation	DICTRA notation
Tracer Diffusivity	$D_i^* = \tilde{\nu}\beta a^2 f \exp\left(\frac{\Delta S_{Va}^f + \Delta S_{Va}^m}{k}\right) \exp\left(-\frac{\Delta H_{Va}^f + \Delta H_{Va}^m}{kT}\right)$ $\tilde{\nu}$ = vibration frequency a = lattice parameter β = 1 for FCC and BCC and 1/8 for diamond cubic f = correlation factor $D = D_0 \exp\left(\frac{-Q}{RT}\right)$	$D_{k}^{*} = RTM_{k}$ $M_{k} = \delta^{2} v \exp\left(-\frac{\Delta G_{kVa}^{*}}{RT}\right) \frac{1}{RT}$
Intrinsic Diffusivity (partial chemical)	$D_i = D_i^* \left[1 + \frac{\partial \log \gamma}{\partial \log N} \right]$	$i D_{kj} = c_k M_{kVa} \frac{\partial \mu_k}{\partial c_j}$
Chemical Diffusivity (Interdiffusion)	$\widetilde{D} = x_A D_B + x_B D_A \text{(binary)}$ $D_i \text{ and } \widetilde{D} \text{ are related by the}$ $\text{velocity of Kirkendall frame,}$ $v = -J_{V_A} V_M$	$D_{kj} = \sum_{i=1}^{n} \left(\delta_{ik} - x_k \right) x_i M_i \frac{\partial \mu_i}{\partial x_j} V_m$

Ternary A-B-C System

In the lattice fixed frame of reference, assuming a substitutional solid solution for a given phase:

$$M_{kVa} = M_k^0 \exp\left(\frac{-\Delta G_{kVa}}{RT}\right) \frac{1}{RT}$$

Assume: $M_k^0 = 1$

Then the activation energy, Qk:

$$\Delta G_{AVa}^* = x_A y_{Va} \Delta G_A^{A:Va} + x_B y_{Va} \Delta G_A^{B:Va} + x_C y_{Va} \Delta G_A^{C:Va} + \Delta G^{excess}$$

$$\Delta G_{BVa}^* = x_A y_{Va} \Delta G_B^{A:Va} + x_B y_{Va} \Delta G_B^{B:Va} + x_C y_{Va} \Delta G_B^{C:Va} + \Delta G^{excess}$$

$$\Delta G_{CVa}^* = x_A y_{Va} \Delta G_C^{A:Va} + x_B y_{Va} \Delta G_C^{B:Va} + x_C y_{Va} \Delta G_C^{C:Va} + \Delta G^{excess}$$

Note x_i = mole fraction of component i y_i = site fraction of component ion a given sublattice

Since this is a substitutional solid solution with no interstitials, $y_{Va} = 1$:

Concentration variables:
$$c_k = \frac{x_k}{V_m} = \frac{x_k}{\sum_{j=1}^n x_j V_j}$$
 and $V_j = \left(\frac{\partial V}{\partial N_j}\right)_{P,T,N_k}$

Where x_k is the mole fraction of component k, V_j is the partial molar volume and N_j is the number of moles of component k.

Assume all the substitutional components have the same partial molar volume: $V_j = V_s$ then for the A-B-C system: $V_m = x_A V_s + x_B V_s + x_C V_s$

Ternary A-B-C System

In the lattice fixed frame of reference: $\sum_{k=1}^{n} J_{k} = -J_{Va} = J_{A} + J_{B} + J_{C}$ $J_{k} = -\sum_{i=1}^{n} {}^{i}D_{kj} \frac{\partial c_{j}}{\partial z} = -\sum_{i=1}^{n-1} L_{kk} \frac{\partial \mu_{k}}{\partial c} \frac{\partial c_{j}}{\partial z}$ ${}^{i}D_{kj} = L_{kk} \frac{\partial \mu_{k}}{\partial c_{j}} = c_{k} y_{Va} M_{kVa} \frac{\partial \mu_{k}}{\partial c_{j}}$ Note $y_{Va} = 1$ and for simplicity drop the Va from $M_{kVa} = M_{k}$ $L_{AA} = x_A M_A \qquad \qquad c_i = \frac{x_i}{V}$ $L_{BB} = x_B M_B$ $L_{cc} = x_c M_c$ ${}^{i}D_{AA} = L_{AA} \frac{\partial \mu_{A}}{\partial c_{A}} \qquad {}^{i}D_{AB} = L_{AA} \frac{\partial \mu_{A}}{\partial c_{B}} \qquad {}^{i}D_{AC} = L_{AA} \frac{\partial \mu_{A}}{\partial c_{A}}$ ${}^{i}D_{BA} = L_{BB} \frac{\partial \mu_{B}}{\partial c}$ ${}^{i}D_{BB} = L_{BB} \frac{\partial \mu_{B}}{\partial c}$ ${}^{i}D_{BC} = L_{BB} \frac{\partial \mu_{B}}{\partial c}$ ${}^{i}D_{CA} = L_{CC} \frac{\partial \mu_{C}}{\partial c}$ ${}^{i}D_{CB} = L_{CC} \frac{\partial \mu_{C}}{\partial c}$ ${}^{i}D_{CC} = L_{CC} \frac{\partial \mu_{C}}{\partial c}$

Ternary A-B-C System

Reduce diffusivities when $V_k = V_s$: $D_{kj}^n = D_{kj} - D_{kn}$ $J_k = -\sum_{j=1}^{n-1} D_{kj}^n \frac{\partial c_j}{\partial z}$

$$Ternary A-B-C$$
$$D_{kj} = -\sum_{i=1}^{n} L'_{ki} \frac{\partial \mu_i}{\partial c_j} = \sum_{i=1}^{n} (\delta_{ik} - x_k) x_i M_i \frac{\partial \mu_i}{\partial x_j} V_m$$

$$\begin{split} D_{AA} &= (1 - x_A) x_A M_A \frac{\partial \mu_A}{\partial x_A} V_m + (0 - x_A) x_B M_B \frac{\partial \mu_B}{\partial x_A} V_m + (0 - x_A) x_C M_C \frac{\partial \mu_C}{\partial x_A} V_m \\ D_{AB} &= (1 - x_A) x_A M_A \frac{\partial \mu_A}{\partial x_B} V_m + (0 - x_A) x_B M_B \frac{\partial \mu_B}{\partial x_B} V_m + (0 - x_A) x_C M_C \frac{\partial \mu_C}{\partial x_B} V_m \\ D_{AC} &= (1 - x_A) x_A M_A \frac{\partial \mu_A}{\partial x_C} V_m + (0 - x_A) x_B M_B \frac{\partial \mu_B}{\partial x_C} V_m + (0 - x_A) x_C M_C \frac{\partial \mu_C}{\partial x_C} V_m \\ D_{BA} &= (0 - x_B) x_A M_A \frac{\partial \mu_A}{\partial x_A} V_m + (1 - x_B) x_B M_B \frac{\partial \mu_B}{\partial x_A} V_m + (0 - x_B) x_C M_C \frac{\partial \mu_C}{\partial x_A} V_m \\ D_{BB} &= (0 - x_B) x_A M_A \frac{\partial \mu_A}{\partial x_C} V_m + (1 - x_B) x_B M_B \frac{\partial \mu_B}{\partial x_C} V_m + (0 - x_B) x_C M_C \frac{\partial \mu_C}{\partial x_B} V_m \\ D_{BC} &= (0 - x_B) x_A M_A \frac{\partial \mu_A}{\partial x_C} V_m + (1 - x_B) x_B M_B \frac{\partial \mu_B}{\partial x_C} V_m + (0 - x_B) x_C M_C \frac{\partial \mu_C}{\partial x_B} V_m \\ D_{CA} &= (0 - x_C) x_A M_A \frac{\partial \mu_A}{\partial x_A} V_m + (0 - x_C) x_B M_B \frac{\partial \mu_B}{\partial x_C} V_m + (1 - x_C) x_C M_C \frac{\partial \mu_C}{\partial x_A} V_m \\ D_{CB} &= (1 - x_C) x_A M_A \frac{\partial \mu_A}{\partial x_B} V_m + (0 - x_C) x_B M_B \frac{\partial \mu_B}{\partial x_B} V_m + (1 - x_C) x_C M_C \frac{\partial \mu_C}{\partial x_A} V_m \end{split}$$

Relation between Intrinsic and Interdiffusion Coefficients

From Sohn and Dayananda (Met. Mat. Trans 33A (2002) 3375)

Published $\widetilde{D}_{ij}^n = D_{ij}^n - N_i \sum_{k=1}^n D_{kj}^n$ notation:

DICTRA notation:

Example: $\widetilde{D}_{AA}^{C} = {}^{i}D_{AA}^{C} - x_{A}\left({}^{i}D_{AA}^{C} + {}^{i}D_{BA}^{C} + {}^{i}D_{CA}^{C}\right)$

 $\widetilde{D}_{ij}^n = {}^i D_{ij}^n - x_i \sum_{i=1}^n {}^i D_{kj}^n$

- \tilde{D}_{ii}^n = interdiffusion coefficient
- D_{ij}^{n} = intrinsic diffusion coefficient (reduced)
- N_i = atom fraction

 $\widetilde{D}_{AA}^{C} = D_{AA} - D_{AC}$ (see previous slide for expansion of D_{AA} and D_{AC}) $\widetilde{D}_{AA}^{C} = x_{A}V_{m} \left[(1 - x_{A})M_{A} \frac{\partial \mu_{A}}{\partial x_{A}} - x_{B}M_{B} \frac{\partial \mu_{B}}{\partial x_{A}} - x_{C}M_{C} \frac{\partial \mu_{C}}{\partial x_{A}} \right] - x_{A}V_{m} \left[(1 - x_{A})M_{A} \frac{\partial \mu_{A}}{\partial x_{C}} - x_{B}M_{B} \frac{\partial \mu_{B}}{\partial x_{C}} - x_{C}M_{C} \frac{\partial \mu_{C}}{\partial x_{C}} \right]$ Note ${}^{i}D_{kj} = x_k M_k \frac{\partial \mu_k}{\partial r}$ Note: $^{i}D_{kj}^{n}=^{i}D_{kj}-^{i}D_{kn}$ $\widetilde{D}_{AA}^{C} = x_{A}V_{m} \left| M_{A} \frac{\partial \mu_{A}}{\partial x} - {}^{i}D_{AA} - {}^{i}D_{CA} - {}^{i}D_{CA} \right| - x_{A}V_{m} \left| M_{A} \frac{\partial \mu_{A}}{\partial x} - {}^{i}D_{AC} - {}^{i}D_{BC} - {}^{i}D_{CC} \right|$ ${}^{i}D_{AA}^{C} = {}^{i}D_{AA} - {}^{i}D_{AC}$ ${}^{i}D_{RA}^{C} = {}^{i}D_{RA} - {}^{i}D_{RC}$ $\widetilde{D}_{AA}^{C} = x_{A}V_{m}M_{A}\frac{\partial\mu_{A}}{\partial r} - x_{A}V_{m}M_{A}\frac{\partial\mu_{A}}{\partial r} - x_{A}V_{m}\left[\left({}^{i}D_{AA} - {}^{i}D_{AC}\right) + \left({}^{i}D_{BA} - {}^{i}D_{BC}\right) + \left({}^{i}D_{CA} - {}^{i}D_{CC}\right)\right]$ ${}^{i}D_{CA}^{C} = {}^{i}D_{CA} - {}^{i}D_{CC}$ $\tilde{D}_{AA}^{C} = ({}^{i}D_{AA} - {}^{i}D_{AC}) - x_{A}V_{m}[({}^{i}D_{AA} - {}^{i}D_{AC}) + ({}^{i}D_{BA} - {}^{i}D_{BC}) + ({}^{i}D_{CA} - {}^{i}D_{CC})]$ Rewrite in terms of reduce diffusivities $\mathbf{N}\widetilde{D}_{AA}^{C} = {}^{i}D_{AA}^{C} - x_{A}V_{m} \Big| {}^{i}D_{AA}^{C} + {}^{i}D_{BA}^{C} + {}^{i}D_{CA}^{C} \Big|$

Diffusion Database Center

C. E. Campbell, U.R. Kattner, C. Beauchamp, K. Dotterer, H. Gates, S. Tobery

☆ Goal: To make the NIST paper-based diffusion database center publicly available.

Convert to a searchable electronic form to be access over the internet

- Motivation
 - Industrial and academic support: GE \$5K initiation
 - Center represents an unique collection summarizing the diffusion work between 1965-1980

Task:

- Need to enter 25000 bibliographic and diffusion system cards
- Convert paper documents to electronic documents
- Develop searchable database
- ✓ Accomplishments (2003)
 - Developed database entry strategy
 - Entered 6000 bibliographic cards
 - Purchase high speed scanner and software

Reference ID:	Data Entry N	lotes		Symbols: Use LATEXT Nomenclatur				
1000	issuse 2	- reb.						
Bibliographica	Dat							
Reference Typ	e: Journa	I Articl	e (Full Joi	urnal Title	e)			
If "Other" sele	cted above, t	ype cate	gory here:					
Article Title:	Cobalt Surface	Cobalt Self-Diffusion: A Study of the Method of Decrease in Surface Activity						
Main Author:	Ruder,	Ruder,R.C.						
Co-Authors:	Bircher	Birchenall,C.E.						
Defense Title								
Reference 110	Journal of Metals							
If available:	Editors							
	Volume	Issue	First page	Last Page	Year			
	191	2	142	146	1951			
	Publisher and Location							
	Bibliogra	Bibliographical Notes						

Upcoming Events

- DIMAT 2004 (July 18-24, 2004, Poland)
 <u>http://www.dimat2004.agh.edu.pl</u>
- First International Conference on Diffusion in Solids and Liquids
 - July 6-8,2005, Aveiro, Portugal
 - http://event.ua.pt/dsl2005/index.html

– Abstracts due Dec. 31, 2004

TMS Annual Meeting Feb., 2005 Multicomponent Multiphase Diffusion Symposium in Honor of John Morral

Symposium abstract: Throughout his career, John Morral has dedicated his work to the understanding and application of multicomponent diffusion. This symposium, in honor of John Morral's 65th birthday, will highlight both experimental and theoretical work in a variety of multicomponent multiphase diffusion problems. This work is increasingly important in improving industrial materials processing and development. In addition to invited speakers, contributed papers on multicomponent diffusion and microstructure evolution are solicited. Highlighted topics are to include diffusion kinetics of high temperature coatings and processing, 'zig-zag' diffusion paths, internal oxidation, carburizing, nitriding, and alloy heat treatment.

Abstract deadline: August 1, 2004

Organizers: C. E. Campbell, U. R. Kattner, NIST, Metallurgy Division, Gaithersburg, MD 20899-8555 A. Lupulescu, Rensselaer Polytechnic Institute, Materials Science & Eng. Troy, NY, 12180-3590

Y. Sohn, University of Central Florida, Orlando, FL 32816-2455.